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LElTER TO THE EDITOR 

Hopf bifurcation in a binary liquid: exact upper bound on the 
frequency 
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Department of Physics, Indian Institute of Technology, Kanpur 208 016, India 

Received 15 July 1987, in final form 3 November 1987 

Abstract. We prove that for the Hopf bifurcation in a binary liquid, the frequency w has 
an exact upper bound given by w , , , = ( k R / ~ ) ” ~  for k > $ ,  where k is the separation 
parameter, U is the Prandtl number and R is the thermal Rayleigh number. The result is 
true for any boundary conditions. In the process, an inequality between the concentration 
and temperature fields is established. 

The onset of convection in binary liquids has attracted a good deal of attention lately 
[ 1-51 because of the possibility of the codimension-two point, the non-equilibrium 
tricritical point and the travelling wave instability at the point of the Hopf bifurcation. 
However, no exact results are known for the onset of oscillatory convection (i.e. the 
Hopf bifurcation) in these mixtures. In this letter we establish a rigorous upper bound 
on the frequency of the oscillatory state over a certain range of the separation parameter 
k for any boundary condition. In particular, we prove that if w is the frequency of 
the oscillation in units of v / d 2  (where v is the kinematic viscosity and d is the plate 
separation in a Rayleigh-Benard geometry), then w 2  < k R / w  for k > f. Here U is the 
Prandtl number of the fluid and R is the thermal Rayleigh number. 

We scale distances by d, time by d 2 /  v and use the field variables w ( z  component 
of velocity scaled by A / d ,  where A is the thermal diffusivity), 8 (temperature fluctuation 
ST from the conduction state scaled by AT, the temperature difference between the 
plates) and 77 = 4 - B ( 4  is the concentration fluctuation 6c from the conduction state 
scaled by Ac, the concentration difference between the plates). In terms of these 
variables the linear stability equations are [ 5 ]  (we drop the negligible Dufour term): 

( D 2 -  a 2 ) ( D 2 -  a 2 - p ) w  = Ra’(1- k)B - k R a 2 v  (1) 

( D 2 - a 2 - p a ) B =  - w  (2) 

In the above, k is the separation parameter ( k =  ( k T / T ) P / a  where k,  is the ther- 
modiffusivity, a is the thermal expansion coefficient and P determines the fractional 
change in density as the concentration of the lighter component is changed), the thermal 
Rayleigh number R is given by 

a ( A T )  d3g  
AV 

R =  (4) 

s is the Lewis number which is the ratio of the mass diffusivity to the thermal diffusivity, 
p is the relaxation rate of the fluctuating fields w, 0 and 7, a is the dimensionless 
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wavenumber in the xy plane and D is the operator d/dz. We note that (1)-(3)  are a 
double-eigenvalue equation in R and p, which are to be prescribed boundary conditions. 

The realistic boundary condition on the velocity field implies 'no-slip' on the 
boundaries which leads to w = Dw = 0 on the boundaries z = 0 and 1. If the bounding 
plates have high conductivity, then temperature fluctuations vanish on the plates and 
we have 8 = 0 on z = 0 and 1. The realistic boundary condition on the concentration 
field is to have the normal component of the mass current vanish at the boundaries 
and this implies Dr] = 0 on z = 0 and 1. Thus the realistic boundary conditions are 
w = D w  = 8 = Dr] = 0 on z = 0 and 1. 

Under these realistic conditions, integrations by parts establishes the following 
results: 

Io' w*D2"w dz = ( -1 )"  Io' ID"w12 dz n = 1 , 2  

Io' 8*D26 dz = -Io' JDOl2 dz 

Io' r]*D2q dz = - lo' 1Dr]I2 dz. 

These results are true for the idealised boundary conditions as well and hence the 
result obtained is independent of the nature of the boundary conditions. We now 
multiply (1) by w* and integrate from 0 to 1 to obtaint 

) w dz-p  w * ( D 2 - a 2 ) w  dz I 
I I 

W * (  D2 - 2 

= Ra2(1- k) w * 8  dz-  kRa2 w*r] dz 

I 
= -Ra2(1 - k) 8(D2-a2-"p*)8* dz-  kRa2 W * T  dz I I 

where ( 2 )  has been used. From ( 3 )  we note that 

r ] (  D2 - a2)  r]* dz - p* a S I r ] I 2  dz = -- S 'I w * q  dz+-p* " 5  S 8*r] dz 

or 

Inserting in ( 6 ) ,  we arrive at 

w*(D2-a2)2Wdz-p W*(D2-a2)wdz I I 
=Ra2(1-k)  8 ( D Z - a 2 - a p * ) 8 * d z - k R a 2 a p *  6*r] dz I 5 

-kRa2ap* J 1r]12dz+kRa2s 5 r](D2-a2)r]*dz. 

Using ( 5 a ) - ( 5 c )  and equating the imaginary parts of either side of the above equation, 

t Our proof uses manipulations similar to those of Pellew and Southwell [ 6 ] .  
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we find at the onset point (i.e. p, = 0, where p = p ,  + ip,, with p2 # 0) of the oscillatory 
instability that 5 lDw12 d z +  a’ I lw12 dz + R a 2 u ( l  - k )  dz - kRa2u 1 (qI2 dz I 

B * q d z s ~ k R a 2 u  (1d12+1T12) dz. I 
Thus, 

( 9 )  

lDwI2dz+a2J  Iw12dz+uRa2(1-$k) (8(2dz- fkRa2u (T(*dzGO I I 
leading to 

1 ~ 1 2 d z > ~ k - 1 ( 1 - ~ k )  lel’dz. (10) I I 
We now retum to ( l) ,  multiply by w* once again and integrate from 0 to 1, using 

S W 
= - ( D~ - +- - e 

UP UP 

from (3) to find 

w * ( D ~ - u ~ ) ~ w  d z - p  w * ( D 2 - a 2 ) w  dz I 
w*dz 

= Ra2 w*O dz-= I lwI2 dz -- kRa2sI w*(D2-a2)r ]  dz J UP UP 
kRa2 

*P 
8(D2-a2-up*)8* dz-- 

+e I [ ( D 2 -  a2)q][(D2- a 2 - p * u / s ) ~ * ]  dz 

-%’I q * 8 * ( D 2 - a 2 ) T  dz 

UP 

UP 
where in the last step we have used (2) and (3). We note from (3) that 

8*(D2-a2)T=-  5 S ‘I 
We use the above, together with (5a)-(5c) in (12) to find I 1D2w[’dz+2o2I  [Dwl’dz+041 IwI2dz+p J ( D w ( * d z + a 2 p  lwl’dz I 

= Ra2 I 1D812 dz + Ra4 I )812 dz + Ra2up* le(’ dz -- kRa2 I lwI2 dz 
UP 

kRa4p* 5 1 ~ 1 ~  dz +e J )(D2-a2)T[’dz+- kRa2p* J 1 ~ 7 1 ~  dz+- 

J 
UP P P 

I kRa2p* 
P 

+- (1 [Del2 d z + a 2  I (812 dz) - kRa2up* 8*T dz. 
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With p = p 1  + ip, and p 1  = 0 at the onset point, by equating the imaginary parts of (14) 
we obtain 

p ,  5 lDw12 dz+p2a2  I Iw(’dz 

i I UI PI2 I UIPl 

kRa2sp2 
/ w 1 2 d z - T  I(D’-a2)71’dz 

kRa2p,  
= -Ra’ap ,  161’ dz+- 

+ p , k R a ’ a  Re 8 ” ~  dz. I 
Since p 2  # 0, 

IDw12dz+Ra2U 5 /61’dz+a2( 1-%) l w I 2 d z + T  I(D2-a2)7I2dz 
UIPI kRa2s UI PI 5 

= k R a 2 a  Re 6*7 dz I 

where we have made use of the inequality of (10). 
For k >  3, the right-hand side is negative and this can be true only if k R / a l p 1 2 >  1,  

since all the other terms on the left-hand side are positive definite. Since lp12 = w 2 ,  
where w is the frequency of the oscillatory state at the onset, this establishes the 
theorem that 

w 2 s  k R / a .  (17) 
How close is the inequality? According to [7] for 3He-4He mixtures an accurate 

numerical analysis of the linear stability equations yields values of R = 1 . 1 4 ~  lo4 and 
w = 86.5 for k = 3 and U = 0.7. The upper limit according to (17) is wmax = 156. For 
k -  1 ,  U = 0.78, R = O S  x lo4, leading to wma,= 80, while the w obtained from the 
numerical work is about 40. 

References 

Brand H, Hohenberg P C and Steinberg V 1984 Phys. Rev. A 30 2584 
Knobloch E 1986 Phys. Rev. A 34 1538 
Ahlers G and Rehberg I 1986 Phys. Rev. Leu. 56 2373 
Gao H and Behringer R 1986 Phys. Rev. A 34 657 
Gutkowicz-Krusin D, Colliiis M A and Ross J 1979 Phys. Fluids 22 1445, 1451 
Pellew A and Southwell R V 1940 h o c .  R. Soc. A 176 312 
Lee G W T, Lucas P G J and Tyler A 1983 J Fluid Mech. 135 235 


